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ABSTRACT

Long range planning for earth orbital experiment
programs often involve use of the idea that experiments, on
the average, display a certain cost per pound of experiment
weight in orbit. This memo presents a different approach
to the problem of estimating experiment weights and costs,
based on a statistical analysis of experiment selection. It
reflects primarily the psychology of the selection process
and is favorably correlated with several examples of experi-
ment selection. An example is presented to show how future
shuttle traffic for OSSA payloads could be estimated.
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Introduction

A manager in charge of a large research laboratory
is annually faced with the problem of distributing his limited
research budget among the almost unlimited number of projects
clamoring for money. If you examine the final results of his
decisions you will probably find a large number of inexpensive
project items, several of intermediate cost and a few that
are quite expensive.

The process illustrated is one of choice or selection
in an environment where resources are limiting. And the re-
sults are only common sense - the cheaper something is, the
more likely it is to be bought.

If this tendency can be quantized, then it might be
applicable say to the distribution of experiments, by cost, in
a research laboratory, or to the distribution by weight of ex-
periments that are flown on a payload limited rocket.

This memo hypothesizes such a quantitative relation-
ship and applies it to some aerospace situations. The results,
although certainly not conclusive, definitely tend to verify
the hypothesis.

Hyperbolic Selection Rule

Let us hypothesize that the probability that an item
(e.g. an experiment) will be selected is inversely propor-
tional to the cost. So;

1
P(C) o E
where P (c) is the probability that some item, any item, of
cost c, will be selected. 1If all the items selected are put
in a bag, then P (c) may also be viewed as the probability
of finding an item of cost c, if we randomly draw one item
from the bag. Hence the cost distribution in the resultant
collection of items will also follow the hyperbolic assumption.
Thus:

n(c) = E‘

(1)

(2)
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The relationship between equations (1) and (2) is explored
more fully in Appendix I.

where K is a proportionality constant, and n (c) is the
frequency function (Reference 1) for the selected items.

In a given range of costs, say 8c, the number of
items to be expected is:

8N(c) = n(c)éc = E%S (3)

since c¢ is the unit cost of those 6N(c) items, the total
cost of the items is:

8C = 6N(c) c = Kéc (4)

and the total cost of all the items in the range of costs
between < and c, is

2
c, <,
Ct = chN(c)c = dec = K(c2 - cl) (5)
¢y c;

Since this process is dealing with limited resources, and
people seldom, if ever, under spend, then Ct must be the

total amount of resources available for the endeavor. It
is the budget, B. It follows then that the proportionality
constant, K, can be defined in terms of the budget by using
equation 5.

K =c=c; = c=¢ (6)
Substituting this into equation 2 gives

_ B
n(c) = ETE;:EI) (7)

The cumulative number of items between the minimum cost, Cqv
and any intermediate cost ¢ can be computed by integrating
N(c). Thus from equation 3.

C (o]
= Béc
ZN = fn(c) §c = c—(—cz—_zl—) (8)

¢y Cl
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Taking the term B
c,-C

271

it is a constant (equation 6), gives

outside the integral, since

C

B §c B C
Z.= — -— = — ln =— (9)
N ¢, cl c c2 cl cq
€1
where c may take any value between c

1 and Cye If ¢ = Cy then

ZN becomes the total number of items in the collection, NT'

Data Comparisons

To test the validity of these equations, some samples
of selection in a restricted resource environment need to be
examined. The experiments for Skylab represent such a sample.
They were selected from a large list of candidates that were
all competing for the limited funds available for experiments.

According to equation 9, a plot of ZN vs 1ln ¢ should be a

straight line. This data from References 2 and 3 is currently
out of date but represents a snapshot of the selection process
of one point in time. It is shown on figure 1. The data does
indeed correlate well with a straight line.

The OSSA prospectus, reference 4, provides another
opportunity to check the correlation. In this case the items
are payloads, and the cost data is accumulated over the past
several years.

Remember that the distribution function relates to
the choice or selection from competing candidates. In funding
payloads, the choice initially is related to the cost of
development rather than the cost of building the paylocad. Be-
cause of the development costs, the percent difference in total
program cost between building the first payload and building
the first two payloads can be quite small. In the same pro-
gram, when later payloads are added, the decision is based
simply on the cost of the additional payloads and the develop-
ment costs need not be considered. This kind of visibility
into the funding history was not always available, so the data
was treated as follows:

1) Experiments where the costs were shared by other
agencies were not considered. These are in limited
supply and are not OSSA resource limited.
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2) Launch vehicle costs are taken from a different
account and are not considered.

3) All data was normalized on a cost per payload basis.
If the total number of payloads built in a particu-
lar program was N, the total program costs are
divided by N to determine cost per payload.

4) Where the decision to buy additional payloads was
identified, the added cost for the additional pay-
loads was used in computing cost per payload.

Because the first decision to begin a particular
payload program was not always described, some scatter in the
data will be introduced by the process of computing cost per
payload. The data is shown in figure 2. The Viking point is
almost a self explaining anomaly.

Another resource that is commonly limited in space
program applications, is weight in orbit. This implies that
a plot of ZN versus 1ln (weight) for space experiments should

be a straight line. This cannot be done for 0SSA payloads
because they tend to be grouped according to the payload
capacity of the launch vehicles. However, the Skylab internal
experiments do represent an appropriate data set, and these

are shown on figure 3. For comparison, the correlation be-
tween experiment cost and experiment weight is shown on figure 4
for the Skylab experiments. Clearly figures 1 and 3 are not
interrelated by a $/LB relationship.

If the data on figures 1, 2, and 3 are really
described by equation 9, then the slopes must be described

by

where

c,=C

2 71

B is set equal to the total amount of
resource expended on the experiments
or payloads.

5 is set equal to the maximum cost or weight
Crmax of the items listed.

1 is set equal to the minimum cost or weight

c_ . of the items listed.
min

The values for B, c and Cnin’ 2Ye listed in

max’
Table I for the Skylab experiment weights and costs, and for

the OSSA costs. Raw data for these two sources is given in
Appendix 2.
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EXPERIMENT COSTS, 103 $
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The validity of as a slope can be checked by

c,-C
271
using equation 9 to compute the total sample size, N
comparing this with actual values.

T and

If the actual minimum and maximum costs per experi-
. and c ) in the example are used, then £, from
in max N
equation 9 will be the number of items between cmaxand cmin’
and so will not include the actual items corresponding to

Chax and Cmin* This discrepancy is a result of the fact that

the distribution has been treated mathematically as a continuum,
but is actually a series of discrete increments. The deviation

is only significant for values of Ly hear 1 which corresponds

to values of ¢ near cl.

ment (c
m

There are 3 ways to adjust for this deviation. One
way to compensate for this is to use values of Cq that are ex-

tended slightly, say 10%, beyond the actual limits of the data.
A second possibility is to simply add 1 to the computed Iy @s a
correction for the region of small C's.

A third more rigorous approach is to define the value
of cy such that when C = Cnin is inserted into equation 9 the

resultant I, is 1. Thus

N
c_.
ZN= 1l = E——E:E——— 1n EE&E
max —min 1
in most cases Cmin <<cmax and the difference between the two
can be simply treated as Crax® Thus
cmax min cmax cmin
B = 1n c Orex B - C
1 P 1
and c, = C ex —cmax
1 min P <

These three approaches are compared in Table I, where

the actual NT and the computed NT's are compared. Agreement is

generally good.

Applications

The analysis can provide some useful guidance in
estimating future traffic models for space experiments. Let
us assume that 0SSA's future budget during the time of the
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TABLE I-A

SKYLAB INTERNAL EXPERIMENT SUMMARY

WEIGHT, LBS. COSsT, 103$
EXPERIMENT IN C z ¢
A 1 10.0 8 600
B 2 10.2 6 467
c 3 18.0 21 3000
D 4 20.0 23 3784
E 5 21.5 20 2794
F 6 22.0 16 1702
G 7 22.1 7 594
H 8 28.0 4 310
I 9 30.0 3 52
J 10 32.0 12 870
K 11 38.0 1 200
L 12 45.0 13 962
M 13 53.0 10 655
N 14 55.0 2 230
0 15 66.0 14 1028
P 16 74.0 9 600
Q 17 82.0 17 2160
R 18 83.0 5 414
S 19 90.0 15 1476
T 20 90.5 22 3248
U 21 118.0 19 2688
\Y 22 153.0 18 2500
W 23 184.0 11 700
X 24 201.0 26 5916
Y 25 208.0 25 5840
Z 26 283.0 24 4074

Experiment names have been deleted in order to

desensitize the data.
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space shuttle is about 600 million dollars, of which about
2/3 will be spent on earth orbit experiments. So

Bg = 400 x 10% $/yr

Based on reference 4, the cost per payload will range between
4 x 106 to 150 x lO6 dollars, so

c, = 150 x 10° s, c, =4 x 10°s

Equation 9 then says that approximately 10 payloads per year
will be purchased.

Assuming that the shuttle payload capacity is about
25,000 1b, then, with 5000 lbs allotted for the experimentors,
about 20,000 lbs should be available for experiments. Hence

Bwt = 20,000 1b/shuttle flight

Since in some instances this full capacity may be
allotted to one experiment, c, = 20,000 1lb. Judging by Sky-

2
lab and OSSA data, a reasonable estimate for minimum experiment
weight is about 100 lbs, so c, = 100 1b. Equation 9 then says

that, on the average, about 5 experiments will be carried per
shuttle flight. Combining these two results indicates that
OSSA will use about 2 shuttle flights per year.

Remember that this is just an example of the analytical
approach, and the input values are simple assumptions. The in-
puts require more careful selection before conclusions are drawn
from the results.

Conclusions

The hyperbolic selection rule is really a description
of the 'psychology of the selection process. As such it should

be applicable to any situation where the proper conditions are
met. At this level of analysis these conditions are little more
than opinion, however the following requirements seem appropriate.

l) The selectors must be aware of the resource restriction.

2) The supply of candidate items must be so big that
some are left unchosen at all cost levels.

3) The final list of selected items must contain several
items, certainly more than one or two
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The data shown here meets these criteria. And
although it does represent a limited set of test cases, it

does clearly support a hyperbolic distribution function for
limited resource selection processes.

&AM oo

1013-pak E. D. Marion




BELLCOMM, INC.

REFERENCES

1. Introduction to Mathematical Statistics, Paul G. Hoel,
Wilen & Sons, Inc. 1954.

2. AAP Weight & Performance Report, NASA, January 1970.

3. AAP Presentation to 69-6 MSFEB:AAP Experiment Development
Cost Review, December 1, 1969.

4. Space Science and Applications - Program Management Report,
Level 0, June 1970.




APPENDIX I - DISTRIBUTION

FUNCTIONS




BELLCOMM, INC.

APPENDIX I - DISTIRBUTION FUNCTION

Statistical distributions are usually presented in
the form of a histogram, such as:

| Ny
N N, .
3 N
__—-——‘ 4
C C C . C C
1 2 dost ¢ 5

Here there are Nl items that cost more than <y and less than
Cye If the sample width, c,~cy, were smaller, then the number

of items in each sample would be correspondingly smaller. A
first approximation that becomes more accurate as the sample
width gets smaller, is to assume that, at any given cost level,
the number of items in the sample is directly proportional to

the sample width. That is
N.
I S -
i+l ci) or Kl = (A-1)

N, = K, (c —
Ci+17C;

i 1

The constant Kl in this equation, when the sample width is

differentially small, is called the sample density, n, and is
the number of samples per unit sample width.

In the correlation suggested on the first page of
this memo the distribution function is

n(c) = -Ié (A-2)

In a collection of items, with costs ranging from o to c_,

F
the total number of items is:

Cp °F

C
Ny =j n{c)de = f‘cidc = Kln (%) (A-3)

€o o)
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What is the probability of finding an item in this
collection of NT items, whose cost lie in the range between

¢ and c+Ac.

The total number of items between the costs of ¢ and c+Ac
ct+Ac

Nc=[ n(c)dc = Kln ‘9.2&' (A-4)

(o]

is:

Thus the probability of finding an item in the
desired range is:

N

P(c) = % = Kin (S2AC]) (a-5)
T —_C
Cp
Kln —
c
o}
Ignoring the constants:
ctic) _ ac _
P(c) o In (&£2€) = 1n (1+2€) (A-6)

As Ac becomes small compared to ¢, and %S <<l

the log term can be approximated by:

In (1+

Ac ) T Ac (A-7)
c c
and hence

Ac 1
P(c) o c or P(c) o Py

thus the statements

1
P(C) o —c"
K
and n(c) = Y on page 1

are mathematically consistant.
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TABLE II-A

OSSA DATA SUMMARY

# OF C
NAME WT COSsT EXPERIMENTS S$S/EXP ZN
Helios 500 10.0 5.0 2
SSS 114 13.0 6.5 4
EASEP 7.0 1 7.0
Explorers 600 71.0 10 7.1 15
ISIS 575 15.0 2 7.5 17
SAS-B 340 10.4 1 10.4 18
RAE-B 725 21.0 2 10.5 20
SAS-A 320 11.3 1 11.3 21
SAS-C 340 14.3 1 14.3 22
INTELLSAT I, II, III 380 45.0 3 15.0 25
SMS 500 30.0 2 15.0 27
GEOS 465 35.0 2 15.5 29
ATMOS EXP 1000 48.0 3 16.0 32
0Ss0O 1000 187 8 23.4 40
ALSEP A, B, C, AZ 284 125 4 31.2 44
Nimbus 1465 117 3 39.0 47
OGO 236 6 39.3 53
Nimbus B 1465 210 5 42.0 58
ALSEP D, E 284 100 2 50.0 60
Pioneer F&G 550 100 2 50.0 62
ATM 21,331 177 3 59.0 65
Mariner Mars 71 2200 120 2 60.0 67
ERTS 1400 127 2 63.5 69
ATS D&E 1749 133 2 66.5 71
ATS F&G 2050 201 2 100.5 73
Mariner Venus/Mer 925 110 1 11.0 74
OAO 4660 363 3 12.1 77
Viking¥* 2400%* 711 4%* 177.7 81
3344*%%*

*2 Spacecraft ea. vehicle, 1 orbiter, 1 lander

2 vehicles in program
** Total Cost without Viking =

2633



